Sunday 9 July 2017

Meningkat Jumlah Periode Dalam Pergerakan Rata Rata


Memindahkan model perataan rata-rata dan eksponensial Sebagai langkah pertama dalam bergerak melampaui model mean, model jalan acak, dan model tren linier, pola nonseasonal dan tren dapat diekstrapolasikan dengan menggunakan model rata-rata bergerak atau pemulusan. Asumsi dasar di balik model rata-rata dan perataan adalah bahwa deret waktu secara lokal bersifat stasioner dengan mean yang bervariasi secara perlahan. Oleh karena itu, kita mengambil rata-rata bergerak (lokal) untuk memperkirakan nilai rata-rata saat ini dan kemudian menggunakannya sebagai perkiraan untuk waktu dekat. Hal ini dapat dianggap sebagai kompromi antara model rata-rata dan model random-walk-without-drift-model. Strategi yang sama dapat digunakan untuk memperkirakan dan mengekstrapolasikan tren lokal. Rata-rata bergerak sering disebut versi quotsmoothedquot dari rangkaian aslinya karena rata-rata jangka pendek memiliki efek menghaluskan benjolan pada rangkaian aslinya. Dengan menyesuaikan tingkat perataan (lebar rata-rata bergerak), kita dapat berharap untuk mencapai keseimbangan optimal antara kinerja model jalan rata-rata dan acak. Jenis model rata-rata yang paling sederhana adalah. Rata-rata Bergerak Sederhana (rata-rata tertimbang): Perkiraan untuk nilai Y pada waktu t1 yang dilakukan pada waktu t sama dengan rata-rata sederhana dari pengamatan m terakhir: (Disini dan di tempat lain saya akan menggunakan simbol 8220Y-hat8221 untuk berdiri Untuk ramalan dari deret waktu yang dibuat Y pada tanggal sedini mungkin dengan model yang diberikan.) Rata-rata ini dipusatkan pada periode t - (m1) 2, yang menyiratkan bahwa perkiraan mean lokal cenderung tertinggal dari yang sebenarnya. Nilai mean lokal sekitar (m1) 2 periode. Jadi, kita katakan bahwa rata-rata usia data dalam rata-rata pergerakan sederhana adalah (m1) 2 relatif terhadap periode dimana ramalan dihitung: ini adalah jumlah waktu dimana perkiraan akan cenderung tertinggal dari titik balik data. . Misalnya, jika Anda rata-rata mendapatkan 5 nilai terakhir, prakiraan akan sekitar 3 periode terlambat dalam menanggapi titik balik. Perhatikan bahwa jika m1, model simple moving average (SMA) sama dengan model random walk (tanpa pertumbuhan). Jika m sangat besar (sebanding dengan panjang periode estimasi), model SMA setara dengan model rata-rata. Seperti parameter model peramalan lainnya, biasanya menyesuaikan nilai k untuk mendapatkan kuotil kuotil terbaik ke data, yaitu kesalahan perkiraan terkecil rata-rata. Berikut adalah contoh rangkaian yang tampaknya menunjukkan fluktuasi acak di sekitar rata-rata yang bervariasi secara perlahan. Pertama, mari mencoba menyesuaikannya dengan model jalan acak, yang setara dengan rata-rata bergerak sederhana dari 1 istilah: Model jalan acak merespons dengan sangat cepat terhadap perubahan dalam rangkaian, namun dengan begitu, ia memilih sebagian besar quot quotisequot di Data (fluktuasi acak) serta quotsignalquot (mean lokal). Jika kita mencoba rata-rata bergerak sederhana dari 5 istilah, kita mendapatkan perkiraan perkiraan yang lebih halus: Rata-rata pergerakan sederhana 5-langkah menghasilkan kesalahan yang jauh lebih kecil daripada model jalan acak dalam kasus ini. Usia rata-rata data dalam ramalan ini adalah 3 ((51) 2), sehingga cenderung tertinggal beberapa titik balik sekitar tiga periode. (Misalnya, penurunan tampaknya terjadi pada periode 21, namun prakiraan tidak berbalik sampai beberapa periode kemudian.) Perhatikan bahwa perkiraan jangka panjang dari model SMA adalah garis lurus horizontal, seperti pada pergerakan acak. model. Dengan demikian, model SMA mengasumsikan bahwa tidak ada kecenderungan dalam data. Namun, sedangkan prakiraan dari model jalan acak sama dengan nilai yang terakhir diamati, prakiraan dari model SMA sama dengan rata-rata tertimbang nilai terakhir. Batas kepercayaan yang dihitung oleh Statgraf untuk perkiraan jangka panjang rata-rata bergerak sederhana tidak semakin luas seiring dengan meningkatnya horizon peramalan. Ini jelas tidak benar Sayangnya, tidak ada teori statistik yang mendasari yang memberi tahu kita bagaimana interval kepercayaan harus melebar untuk model ini. Namun, tidak terlalu sulit untuk menghitung perkiraan empiris batas kepercayaan untuk perkiraan horizon yang lebih panjang. Misalnya, Anda bisa membuat spreadsheet di mana model SMA akan digunakan untuk meramalkan 2 langkah di depan, 3 langkah di depan, dan lain-lain dalam sampel data historis. Anda kemudian bisa menghitung penyimpangan standar sampel dari kesalahan pada setiap horison perkiraan, dan kemudian membangun interval kepercayaan untuk perkiraan jangka panjang dengan menambahkan dan mengurangi kelipatan dari deviasi standar yang sesuai. Jika kita mencoba rata-rata pergerakan sederhana 9-term, kita mendapatkan perkiraan yang lebih halus dan lebih banyak efek lagging: Usia rata-rata sekarang adalah 5 periode ((91) 2). Jika kita mengambil moving average 19-term, usia rata-rata meningkat menjadi 10: Perhatikan bahwa, memang, ramalannya sekarang tertinggal dari titik balik sekitar 10 periode. Jumlah smoothing yang terbaik untuk seri ini Berikut adalah tabel yang membandingkan statistik kesalahan mereka, juga termasuk rata-rata 3-rata: Model C, rata-rata bergerak 5-term, menghasilkan nilai RMSE terendah dengan margin kecil di atas 3 - term dan rata-rata 9-istilah, dan statistik lainnya hampir sama. Jadi, di antara model dengan statistik kesalahan yang sangat mirip, kita bisa memilih apakah kita lebih memilih sedikit responsif atau sedikit lebih kehalusan dalam ramalan. (Lihat ke atas halaman.) Browns Simple Exponential Smoothing (rata-rata bergerak rata-rata tertimbang) Model rata-rata bergerak sederhana yang dijelaskan di atas memiliki properti yang tidak diinginkan sehingga memperlakukan pengamatan terakhir secara sama dan sama sekali mengabaikan semua pengamatan sebelumnya. Secara intuitif, data masa lalu harus didiskontokan secara lebih bertahap - misalnya, pengamatan terbaru harus mendapatkan bobot sedikit lebih besar dari yang terakhir, dan yang ke-2 terakhir harus mendapatkan bobot sedikit lebih banyak dari yang ke-3 terakhir, dan Begitu seterusnya Model pemulusan eksponensial sederhana (SES) menyelesaikan hal ini. Misalkan 945 menunjukkan kuototmothing constantquot (angka antara 0 dan 1). Salah satu cara untuk menulis model adalah dengan menentukan rangkaian L yang mewakili tingkat saat ini (yaitu nilai rata-rata lokal) dari seri yang diperkirakan dari data sampai saat ini. Nilai L pada waktu t dihitung secara rekursif dari nilai sebelumnya seperti ini: Dengan demikian, nilai smoothed saat ini adalah interpolasi antara nilai smoothed sebelumnya dan pengamatan saat ini, di mana 945 mengendalikan kedekatan nilai interpolasi dengan yang paling baru. pengamatan. Perkiraan untuk periode berikutnya hanyalah nilai merapikan saat ini: Secara ekivalen, kita dapat mengekspresikan perkiraan berikutnya secara langsung dalam perkiraan sebelumnya dan pengamatan sebelumnya, dengan versi setara berikut. Pada versi pertama, ramalan tersebut merupakan interpolasi antara perkiraan sebelumnya dan pengamatan sebelumnya: Pada versi kedua, perkiraan berikutnya diperoleh dengan menyesuaikan perkiraan sebelumnya ke arah kesalahan sebelumnya dengan jumlah pecahan 945. adalah kesalahan yang dilakukan pada Waktu t. Pada versi ketiga, perkiraan tersebut adalah rata-rata bergerak tertimbang secara eksponensial (yaitu diskon) dengan faktor diskonto 1- 945: Versi perumusan rumus peramalan adalah yang paling mudah digunakan jika Anda menerapkan model pada spreadsheet: sesuai dengan Sel tunggal dan berisi referensi sel yang mengarah ke perkiraan sebelumnya, pengamatan sebelumnya, dan sel dimana nilai 945 disimpan. Perhatikan bahwa jika 945 1, model SES setara dengan model jalan acak (tanpa pertumbuhan). Jika 945 0, model SES setara dengan model rata-rata, dengan asumsi bahwa nilai smoothing pertama ditetapkan sama dengan mean. (Kembali ke atas halaman.) Usia rata-rata data dalam ramalan eksponensial sederhana adalah 1 945 relatif terhadap periode dimana ramalan dihitung. (Ini tidak seharusnya jelas, namun dengan mudah dapat ditunjukkan dengan mengevaluasi rangkaian tak terbatas.) Oleh karena itu, perkiraan rata-rata bergerak sederhana cenderung tertinggal dari titik balik sekitar 1 945 periode. Misalnya, bila 945 0,5 lag adalah 2 periode ketika 945 0,2 lag adalah 5 periode ketika 945 0,1 lag adalah 10 periode, dan seterusnya. Untuk usia rata-rata tertentu (yaitu jumlah lag), ramalan eksponensial eksponensial sederhana (SES) agak lebih unggul daripada ramalan rata-rata bergerak sederhana karena menempatkan bobot yang relatif lebih tinggi pada pengamatan terakhir - i. Ini sedikit lebih responsif terhadap perubahan yang terjadi di masa lalu. Sebagai contoh, model SMA dengan 9 istilah dan model SES dengan 945 0,2 keduanya memiliki usia rata-rata 5 untuk data dalam perkiraan mereka, namun model SES memberi bobot lebih besar pada 3 nilai terakhir daripada model SMA dan pada Pada saat yang sama, hal itu sama sekali tidak sesuai dengan nilai lebih dari 9 periode, seperti yang ditunjukkan pada tabel ini: Keuntungan penting lain dari model SES dibandingkan model SMA adalah model SES menggunakan parameter pemulusan yang terus menerus bervariasi, sehingga mudah dioptimalkan. Dengan menggunakan algoritma quotsolverquot untuk meminimalkan kesalahan kuadrat rata-rata. Nilai optimal 945 dalam model SES untuk seri ini ternyata adalah 0,2961, seperti yang ditunjukkan di sini: Usia rata-rata data dalam ramalan ini adalah 10.2961 3,4 periode, yang serupa dengan rata-rata pergerakan sederhana 6-istilah. Perkiraan jangka panjang dari model SES adalah garis lurus horisontal. Seperti pada model SMA dan model jalan acak tanpa pertumbuhan. Namun, perhatikan bahwa interval kepercayaan yang dihitung oleh Statgraphics sekarang berbeda dengan mode yang masuk akal, dan secara substansial lebih sempit daripada interval kepercayaan untuk model perjalanan acak. Model SES mengasumsikan bahwa seri ini agak dapat diprediksi daripada model acak berjalan. Model SES sebenarnya adalah kasus khusus model ARIMA. Sehingga teori statistik model ARIMA memberikan dasar yang kuat untuk menghitung interval kepercayaan untuk model SES. Secara khusus, model SES adalah model ARIMA dengan satu perbedaan nonseasonal, MA (1), dan tidak ada istilah konstan. Atau dikenal sebagai model quotARIMA (0,1,1) tanpa constantquot. Koefisien MA (1) pada model ARIMA sesuai dengan kuantitas 1- 945 pada model SES. Misalnya, jika Anda memasukkan model ARIMA (0,1,1) tanpa konstan pada rangkaian yang dianalisis di sini, koefisien MA (0) diperkirakan berubah menjadi 0,7029, yang hampir persis satu minus 0,2961. Hal ini dimungkinkan untuk menambahkan asumsi tren linier konstan non-nol ke model SES. Untuk melakukan ini, cukup tentukan model ARIMA dengan satu perbedaan nonseasonal dan MA (1) dengan konstan, yaitu model ARIMA (0,1,1) dengan konstan. Perkiraan jangka panjang kemudian akan memiliki tren yang sama dengan tren rata-rata yang diamati selama periode estimasi keseluruhan. Anda tidak dapat melakukan ini bersamaan dengan penyesuaian musiman, karena opsi penyesuaian musiman dinonaktifkan saat jenis model diatur ke ARIMA. Namun, Anda dapat menambahkan tren eksponensial jangka panjang yang konstan ke model pemulusan eksponensial sederhana (dengan atau tanpa penyesuaian musiman) dengan menggunakan opsi penyesuaian inflasi dalam prosedur Peramalan. Kecepatan quotinflationquot (persentase pertumbuhan) yang sesuai per periode dapat diperkirakan sebagai koefisien kemiringan dalam model tren linier yang sesuai dengan data yang terkait dengan transformasi logaritma alami, atau dapat didasarkan pada informasi independen lain mengenai prospek pertumbuhan jangka panjang. . (Kembali ke atas halaman.) Browns Linear (yaitu ganda) Exponential Smoothing Model SMA dan model SES mengasumsikan bahwa tidak ada kecenderungan jenis apapun dalam data (yang biasanya OK atau setidaknya tidak terlalu buruk selama 1- Prakiraan ke depan saat data relatif bising), dan mereka dapat dimodifikasi untuk menggabungkan tren linier konstan seperti yang ditunjukkan di atas. Bagaimana dengan tren jangka pendek Jika suatu seri menampilkan tingkat pertumbuhan atau pola siklus yang berbeda yang menonjol dengan jelas terhadap kebisingan, dan jika ada kebutuhan untuk meramalkan lebih dari 1 periode di depan, maka perkiraan tren lokal mungkin juga terjadi. sebuah isu. Model pemulusan eksponensial sederhana dapat digeneralisasi untuk mendapatkan model pemulusan eksponensial linear (LES) yang menghitung perkiraan lokal tingkat dan kecenderungan. Model tren waktu yang paling sederhana adalah model pemulusan eksponensial Browns linier, yang menggunakan dua seri penghalusan berbeda yang berpusat pada berbagai titik waktu. Rumus peramalan didasarkan pada ekstrapolasi garis melalui dua pusat. (Versi yang lebih canggih dari model ini, Holt8217s, dibahas di bawah ini.) Bentuk aljabar model pemulusan eksponensial linier Brown8217s, seperti model pemulusan eksponensial sederhana, dapat dinyatakan dalam sejumlah bentuk yang berbeda namun setara. Bentuk quotstandardquot model ini biasanya dinyatakan sebagai berikut: Misalkan S menunjukkan deretan sumbu tunggal yang diperoleh dengan menerapkan smoothing eksponensial sederhana ke seri Y. Artinya, nilai S pada periode t diberikan oleh: (Ingat, bahwa dengan sederhana Eksponensial smoothing, ini akan menjadi perkiraan untuk Y pada periode t1.) Kemudian, biarkan Squot menunjukkan seri merapikan ganda yang diperoleh dengan menerapkan perataan eksponensial sederhana (menggunakan yang sama 945) ke seri S: Akhirnya, perkiraan untuk Y tk. Untuk setiap kgt1, diberikan oleh: Ini menghasilkan e 1 0 (yaitu menipu sedikit, dan membiarkan perkiraan pertama sama dengan pengamatan pertama yang sebenarnya), dan e 2 Y 2 8211 Y 1. Setelah itu prakiraan dihasilkan dengan menggunakan persamaan di atas. Ini menghasilkan nilai pas yang sama seperti rumus berdasarkan S dan S jika yang terakhir dimulai dengan menggunakan S 1 S 1 Y 1. Versi model ini digunakan pada halaman berikutnya yang menggambarkan kombinasi pemulusan eksponensial dengan penyesuaian musiman. Model LES Linear Exponential Smoothing Brown8217s Ls menghitung perkiraan lokal tingkat dan tren dengan menghaluskan data baru-baru ini, namun kenyataan bahwa ia melakukannya dengan parameter pemulusan tunggal menempatkan batasan pada pola data yang dapat disesuaikan: tingkat dan tren Tidak diizinkan untuk bervariasi pada tingkat independen. Model LES Holt8217s membahas masalah ini dengan memasukkan dua konstanta pemulusan, satu untuk level dan satu untuk tren. Setiap saat, seperti pada model Brown8217s, ada perkiraan L t tingkat lokal dan perkiraan T t dari tren lokal. Di sini mereka dihitung secara rekursif dari nilai Y yang diamati pada waktu t dan perkiraan tingkat dan kecenderungan sebelumnya oleh dua persamaan yang menerapkan pemulusan eksponensial kepada mereka secara terpisah. Jika perkiraan tingkat dan tren pada waktu t-1 adalah L t82091 dan T t-1. Masing, maka perkiraan untuk Y tshy yang akan dilakukan pada waktu t-1 sama dengan L t-1 T t-1. Bila nilai aktual diamati, perkiraan tingkat yang diperbarui dihitung secara rekursif dengan menginterpolasi antara Y tshy dan ramalannya, L t-1 T t-1, dengan menggunakan bobot 945 dan 1- 945. Perubahan pada tingkat perkiraan, Yaitu L t 8209 L t82091. Dapat diartikan sebagai pengukuran yang bising pada tren pada waktu t. Perkiraan tren yang diperbarui kemudian dihitung secara rekursif dengan menginterpolasi antara L t 8209 L t82091 dan perkiraan sebelumnya dari tren, T t-1. Menggunakan bobot 946 dan 1-946: Interpretasi konstanta perataan tren 946 sama dengan konstanta pemulusan tingkat 945. Model dengan nilai kecil 946 beranggapan bahwa tren hanya berubah sangat lambat seiring berjalannya waktu, sementara model dengan Lebih besar 946 berasumsi bahwa itu berubah lebih cepat. Sebuah model dengan besar 946 percaya bahwa masa depan yang jauh sangat tidak pasti, karena kesalahan dalam estimasi tren menjadi sangat penting saat meramalkan lebih dari satu periode di masa depan. (Kembali ke atas halaman.) Konstanta pemulusan 945 dan 946 dapat diperkirakan dengan cara biasa dengan meminimalkan kesalahan kuadrat rata-rata dari perkiraan satu langkah ke depan. Bila ini dilakukan di Stategaf, perkiraannya adalah 945 0,3048 dan 946 0,008. Nilai yang sangat kecil dari 946 berarti bahwa model tersebut mengasumsikan perubahan sangat sedikit dalam tren dari satu periode ke periode berikutnya, jadi pada dasarnya model ini mencoba memperkirakan tren jangka panjang. Dengan analogi dengan pengertian umur rata-rata data yang digunakan dalam memperkirakan tingkat lokal seri, rata-rata usia data yang digunakan dalam memperkirakan tren lokal sebanding dengan 1 946, meskipun tidak sama persis dengan itu. . Dalam hal ini ternyata 10.006 125. Ini adalah jumlah yang sangat tepat karena keakuratan estimasi 946 tidak benar-benar ada 3 tempat desimal, namun urutannya sama besarnya dengan ukuran sampel 100, jadi Model ini rata-rata memiliki cukup banyak sejarah dalam memperkirakan tren. Plot perkiraan di bawah ini menunjukkan bahwa model LES memperkirakan tren lokal yang sedikit lebih besar di akhir rangkaian daripada tren konstan yang diperkirakan dalam model SEStrend. Juga, nilai estimasi 945 hampir sama dengan yang diperoleh dengan cara memasang model SES dengan atau tanpa tren, jadi model ini hampir sama. Sekarang, apakah ini terlihat seperti ramalan yang masuk akal untuk model yang seharusnya memperkirakan tren lokal Jika Anda memilih plot ini, sepertinya tren lokal telah berubah ke bawah pada akhir seri Apa yang telah terjadi Parameter model ini Telah diperkirakan dengan meminimalkan kesalahan kuadrat dari perkiraan satu langkah ke depan, bukan perkiraan jangka panjang, dalam hal ini tren tidak menghasilkan banyak perbedaan. Jika semua yang Anda lihat adalah kesalahan 1 langkah maju, Anda tidak melihat gambaran tren yang lebih besar mengenai (katakanlah) 10 atau 20 periode. Agar model ini lebih selaras dengan ekstrapolasi data bola mata kami, kami dapat secara manual menyesuaikan konstanta perataan tren sehingga menggunakan garis dasar yang lebih pendek untuk estimasi tren. Misalnya, jika kita memilih menetapkan 946 0,1, maka usia rata-rata data yang digunakan dalam memperkirakan tren lokal adalah 10 periode, yang berarti bahwa kita rata-rata mengalami trend selama 20 periode terakhir. Berikut ini perkiraan plot perkiraan jika kita menetapkan 946 0,1 sambil mempertahankan 945 0,3. Ini terlihat sangat masuk akal untuk seri ini, meskipun mungkin berbahaya untuk memperkirakan tren ini lebih dari 10 periode di masa depan. Bagaimana dengan statistik kesalahan Berikut adalah perbandingan model untuk kedua model yang ditunjukkan di atas dan juga tiga model SES. Nilai optimal 945. Untuk model SES adalah sekitar 0,3, namun hasil yang serupa (dengan sedikit atau kurang responsif, masing-masing) diperoleh dengan 0,5 dan 0,2. (A) Holts linear exp. Smoothing dengan alpha 0.3048 dan beta 0.008 (B) Holts linear exp. Smoothing dengan alpha 0.3 dan beta 0,1 (C) Smoothing eksponensial sederhana dengan alpha 0.5 (D) Smoothing eksponensial sederhana dengan alpha 0.3 (E) Smoothing eksponensial sederhana dengan alpha 0.2 Statistik mereka hampir identik, jadi kita benar-benar tidak dapat membuat pilihan berdasarkan dasar Kesalahan perkiraan 1 langkah di depan sampel data. Kita harus kembali pada pertimbangan lain. Jika kita sangat percaya bahwa masuk akal untuk mendasarkan perkiraan tren saat ini pada apa yang telah terjadi selama 20 periode terakhir, kita dapat membuat kasus untuk model LES dengan 945 0,3 dan 946 0,1. Jika kita ingin bersikap agnostik tentang apakah ada tren lokal, maka salah satu model SES mungkin akan lebih mudah dijelaskan dan juga akan memberikan prakiraan tengah jalan untuk periode 5 atau 10 berikutnya. (Apa yang dimaksud dengan tren-ekstrapolasi terbaik: Bukti empiris horizontal atau linier menunjukkan bahwa, jika data telah disesuaikan (jika perlu) untuk inflasi, maka mungkin tidak bijaksana untuk melakukan ekstrapolasi linier jangka pendek Tren sangat jauh ke depan. Tren yang terbukti hari ini dapat mengendur di masa depan karena beragam penyebabnya seperti keusangan produk, persaingan yang meningkat, dan kemerosotan siklis atau kenaikan di industri. Untuk alasan ini, smoothing eksponensial sederhana sering kali melakukan out-of-sample yang lebih baik daripada yang mungkin diharapkan, terlepas dari ekstrapolasi horisontal kuotometer. Modifikasi tren yang teredam dari model pemulusan eksponensial linier juga sering digunakan dalam praktik untuk memperkenalkan catatan konservatisme ke dalam proyeksi trennya. Model LES teredam-tren dapat diimplementasikan sebagai kasus khusus model ARIMA, khususnya model ARIMA (1,1,2). Ada kemungkinan untuk menghitung interval kepercayaan di sekitar perkiraan jangka panjang yang dihasilkan oleh model penghalusan eksponensial, dengan menganggapnya sebagai kasus khusus model ARIMA. (Hati-hati: tidak semua perangkat lunak menghitung interval kepercayaan untuk model ini dengan benar.) Lebar interval kepercayaan bergantung pada (i) kesalahan RMS pada model, (ii) jenis smoothing (sederhana atau linier) (iii) nilai (S) dari konstanta pemulusan (s) dan (iv) jumlah periode di depan yang Anda peramalkan. Secara umum, interval menyebar lebih cepat saat 945 semakin besar dalam model SES dan menyebar jauh lebih cepat bila perataan linier dan bukan perataan sederhana digunakan. Topik ini dibahas lebih lanjut di bagian model ARIMA dari catatan. (Kembali ke atas halaman.) Metode Seri Waktu Metode deret waktu adalah teknik statistik yang memanfaatkan akumulasi data historis selama periode waktu tertentu. Metode time series mengasumsikan bahwa apa yang telah terjadi di masa lalu akan terus terjadi di masa depan. Seperti yang ditunjukkan oleh deret waktu nama, metode ini menghubungkan perkiraan hanya dengan satu faktor waktu. Mereka termasuk rata-rata bergerak, eksponensial smoothing, dan garis tren linier dan mereka adalah salah satu metode yang paling populer untuk peramalan jangka pendek di antara perusahaan jasa dan manufaktur. Metode ini mengasumsikan bahwa pola historis yang dapat diidentifikasi atau kecenderungan permintaan dari waktu ke waktu akan berulang. Moving Average Sebuah perkiraan deret waktu dapat sesederhana dengan menggunakan permintaan pada periode saat ini untuk memprediksi permintaan pada periode berikutnya. Ini kadang disebut ramalan naif atau intuitif. 4 Misalnya, jika permintaan 100 unit minggu ini, perkiraan permintaan minggu depan adalah 100 unit jika permintaan berubah menjadi 90 unit, maka permintaan minggu berikutnya adalah 90 unit, dan seterusnya. Metode peramalan jenis ini tidak memperhitungkan perilaku permintaan historis yang hanya bergantung pada permintaan pada periode berjalan. Ini bereaksi langsung terhadap pergerakan acak yang normal. Metode rata-rata bergerak sederhana menggunakan beberapa nilai permintaan selama masa lalu untuk mengembangkan perkiraan. Hal ini cenderung mereda, atau kelancaran keluar, peningkatan acak dan penurunan ramalan yang hanya menggunakan satu periode. Rata-rata pergerakan sederhana berguna untuk meramalkan permintaan yang stabil dan tidak menampilkan perilaku permintaan yang menonjol, seperti tren atau pola musiman. Moving averages dihitung untuk periode tertentu, seperti tiga bulan atau lima bulan, tergantung pada seberapa banyak keinginan peramal untuk memperlancar data permintaan. Semakin lama periode rata-rata bergerak, semakin halus jadinya. Rumus untuk menghitung rata-rata bergerak sederhana adalah Computing a Simple Moving Average Perusahaan Klip Kertas Klip Instan yang menjual dan menjual perlengkapan kantor ke perusahaan, sekolah, dan agen dalam radius 50 mil di gudangnya. Bisnis penyediaan kantor sangat kompetitif, dan kemampuan untuk menyampaikan pesanan segera merupakan faktor dalam mendapatkan pelanggan baru dan mempertahankan bisnis lama. (Kantor biasanya memesan tidak ketika mereka kehabisan persediaan, tapi ketika mereka benar-benar kehabisan. Akibatnya, mereka segera mendapatkan pesanan mereka.) Manajer perusahaan ingin cukup yakin bahwa pengemudi dan kendaraan tersedia untuk segera mengirimkan pesanan dan Mereka memiliki persediaan yang memadai. Oleh karena itu, manajer ingin meramalkan jumlah pesanan yang akan terjadi selama bulan depan (yaitu untuk meramalkan permintaan pengiriman). Dari catatan pesanan pengiriman, manajemen telah mengumpulkan data berikut selama 10 bulan terakhir, dari mana ia ingin menghitung rata-rata bergerak 3 dan 5 bulan. Mari kita asumsikan bahwa itu adalah akhir Oktober. Perkiraan yang dihasilkan dari rata-rata pergerakan rata-rata 3 atau 5 bulan biasanya untuk bulan berikutnya dalam urutan, yang dalam kasus ini adalah bulan November. Rata-rata bergerak dihitung dari permintaan pesanan selama 3 bulan sebelumnya dalam urutan sesuai dengan rumus berikut: Rasio moving average 5 bulan dihitung dari 5 bulan data permintaan sebelumnya sebagai berikut: 3- dan 5 bulan Perkiraan rata-rata bergerak untuk semua data permintaan bulan ditunjukkan pada tabel berikut. Sebenarnya hanya perkiraan bulan November berdasarkan permintaan bulanan terbaru yang akan digunakan oleh manajer. Namun, perkiraan sebelumnya untuk bulan sebelumnya memungkinkan kita membandingkan perkiraan dengan permintaan aktual untuk melihat seberapa akurat metode peramalan - yaitu, seberapa baik kinerjanya. Rata-rata Tiga dan Lima Bulan Perkiraan rata-rata bergerak dalam tabel di atas cenderung memperlancar variabilitas yang terjadi pada data aktual. Efek pemulusan ini dapat diamati pada gambar berikut di mana rata-rata 3 bulan dan 5 bulan telah ditumpangkan pada grafik data asli: Rerata moving average 5 bulan pada gambar sebelumnya menghaluskan fluktuasi ke tingkat yang lebih tinggi daripada Rata-rata pergerakan 3 bulan. Namun, rata-rata 3 bulan lebih dekat mencerminkan data terbaru yang tersedia bagi manajer pasokan kantor. Secara umum, prakiraan menggunakan moving average jangka panjang lebih lambat untuk bereaksi terhadap perubahan permintaan baru-baru ini daripada yang dibuat dengan menggunakan rata-rata bergerak jangka pendek. Periode ekstra data mengurangi kecepatan perkiraan ramalan. Menetapkan jumlah periode yang tepat untuk digunakan dalam perkiraan rata-rata bergerak seringkali memerlukan sejumlah eksperimentasi percobaan dan kesalahan. Kerugian dari metode rata-rata bergerak adalah tidak bereaksi terhadap variasi yang terjadi karena suatu alasan, seperti siklus dan efek musiman. Faktor yang menyebabkan perubahan umumnya diabaikan. Ini pada dasarnya adalah metode mekanis, yang mencerminkan data historis secara konsisten. Namun, metode moving average memang memiliki keunggulan karena mudah digunakan, cepat, dan relatif murah. Secara umum, metode ini bisa memberikan ramalan yang bagus untuk jangka pendek, tapi seharusnya tidak didorong terlalu jauh ke masa depan. Weighted Moving Average Metode moving average dapat disesuaikan untuk lebih dekat mencerminkan fluktuasi data. Dengan metode rata-rata bergerak tertimbang, bobot ditetapkan ke data terbaru sesuai dengan rumus berikut: Data permintaan untuk Layanan Komputer PM (ditunjukkan pada tabel untuk Contoh 10.3) nampak mengikuti tren linier yang meningkat. Perusahaan ingin menghitung garis tren linier untuk melihat apakah lebih akurat daripada eksponensial smoothing eksponensial dan perkiraan eksponensial yang dikembangkan pada Contoh 10.3 dan 10.4. Nilai yang diperlukan untuk perhitungan kuadrat terkecil adalah sebagai berikut: Dengan menggunakan nilai-nilai ini, parameter untuk garis tren linier dihitung sebagai berikut: Oleh karena itu, persamaan garis linier linier adalah menghitung ramalan untuk periode 13, misalkan x 13 pada linier Garis tren: Grafik berikut menunjukkan garis tren linier dibandingkan dengan data aktual. Garis tren tampaknya mencerminkan secara cermat data aktual - yaitu, menjadi sesuai - dan dengan demikian akan menjadi model perkiraan yang baik untuk masalah ini. Namun, kerugian dari lini tren linier adalah bahwa ia tidak akan menyesuaikan diri dengan perubahan tren, karena metode ramalan eksponensial eksponensial akan berlanjut, diasumsikan bahwa semua perkiraan masa depan akan mengikuti garis lurus. Ini membatasi penggunaan metode ini ke jangka waktu yang lebih singkat di mana Anda dapat yakin bahwa tren tidak akan berubah. Penyesuaian Musiman Pola musiman adalah peningkatan berulang dan penurunan permintaan. Banyak item permintaan menunjukkan perilaku musiman. Penjualan pakaian mengikuti pola musiman tahunan, dengan permintaan akan pakaian hangat meningkat di musim gugur dan musim dingin dan menurun pada musim semi dan musim panas karena permintaan akan pakaian dingin meningkat. Permintaan untuk banyak barang ritel, termasuk mainan, peralatan olahraga, pakaian, peralatan elektronik, ham, kalkun, anggur, dan buah, meningkat selama musim liburan. Permintaan kartu ucapan meningkat seiring dengan hari-hari istimewa seperti Hari Kasih Sayang dan Hari Ibu. Pola musiman juga bisa terjadi setiap bulan, mingguan, atau bahkan setiap hari. Beberapa restoran memiliki permintaan yang lebih tinggi di malam hari daripada saat makan siang atau pada akhir pekan dibandingkan dengan hari kerja. Lalu lintas - maka penjualan - di pusat perbelanjaan mengambil pada hari Jumat dan Sabtu. Ada beberapa metode untuk mencerminkan pola musiman dalam perkiraan deret waktu. Kami akan menjelaskan salah satu metode sederhana menggunakan faktor musiman. Faktor musiman adalah nilai numerik yang dikalikan dengan perkiraan normal untuk mendapatkan perkiraan musiman yang disesuaikan. Salah satu metode untuk mengembangkan permintaan faktor musiman adalah membagi permintaan untuk setiap periode musiman dengan total permintaan tahunan, sesuai dengan rumus berikut: Faktor musiman yang dihasilkan antara 0 dan 1.0, pada dasarnya, merupakan bagian dari total permintaan tahunan yang ditugaskan pada Setiap musim Faktor musiman ini dikalikan dengan permintaan tahunan yang diperkirakan untuk menghasilkan perkiraan yang disesuaikan untuk setiap musim. Menghitung Prakiraan dengan Penyesuaian Musiman Peternakan Wishbone menanam kalkun untuk dijual ke perusahaan pengolahan daging sepanjang tahun. Namun, peak season-nya jelas pada kuartal keempat tahun ini, dari Oktober hingga Desember. Wishbone Farms telah mengalami permintaan untuk kalkun selama tiga tahun terakhir yang ditunjukkan pada tabel berikut: Karena kita memiliki data permintaan tiga tahun, kita dapat menghitung faktor musiman dengan membagi permintaan triwulanan selama tiga tahun dengan total permintaan sepanjang tiga tahun : Selanjutnya, kita ingin melipatgandakan perkiraan permintaan untuk tahun depan, 2000, oleh masing-masing faktor musiman untuk mendapatkan perkiraan permintaan untuk setiap kuartal. Untuk mencapai hal ini, kita memerlukan perkiraan permintaan untuk tahun 2000. Dalam kasus ini, karena data permintaan dalam tabel tampaknya menunjukkan tren yang meningkat secara umum, kita menghitung garis tren linier selama tiga tahun data dalam tabel untuk mendapatkan nilai kasar Perkiraan perkiraan: Dengan demikian, perkiraan untuk tahun 2000 adalah 58,17, atau 58.170 kalkun. Dengan menggunakan perkiraan permintaan tahunan ini, perkiraan musiman yang disesuaikan, SF i, untuk tahun 2000 adalah Membandingkan perkiraan kuartalan ini dengan nilai permintaan aktual dalam tabel, perkiraan perkiraan perkiraan mereka relatif baik, yang mencerminkan variasi musiman dalam data dan Tren naik secara umum. 10-12. Bagaimana metode moving average mirip dengan eksponensial smoothing 10-13. Apa efek pada model smoothing eksponensial yang akan meningkatkan konstanta smoothing memiliki 10-14. Bagaimana cara menyesuaikan eksponensial smoothing berbeda dengan eksponensial smoothing 10-15. Apa yang menentukan pilihan konstanta pemulusan untuk tren dalam model pemulusan eksponensial yang disesuaikan 10-16. Dalam contoh bab untuk metode time series, perkiraan awal selalu diasumsikan sama dengan permintaan aktual pada periode pertama. Sarankan cara lain agar ramalan awal bisa digunakan secara aktual. 10-17. Bagaimana model peramalan linier linier berbeda dari model regresi linier untuk peramalan 10-18. Dari model deret waktu yang disajikan dalam bab ini, termasuk rata-rata bergerak dan rata-rata bergerak tertimbang, pemulusan eksponensial dan pemulusan eksponensial yang disesuaikan, dan garis tren linier, yang mana yang Anda anggap terbaik Mengapa 10-19. Keuntungan apa yang disesuaikan dengan eksponensial smoothing memiliki garis linier linier untuk perkiraan permintaan yang menunjukkan tren 4 K. B. Kahn dan J. T. Mentzer, Peramalan Pasar Konsumen dan Industri, Journal of Business Forecasting 14, no. 2 (Musim panas 1995): 21-28. Dalam praktiknya, rata-rata bergerak akan memberikan perkiraan yang baik tentang mean deret waktu jika mean konstan atau berubah secara perlahan. Dalam kasus mean konstan, nilai m terbesar akan memberikan perkiraan terbaik dari mean yang mendasarinya. Periode pengamatan yang lebih lama akan rata-rata menghasilkan efek variabilitas. Tujuan menyediakan m yang lebih kecil adalah memungkinkan perkiraan tersebut merespons perubahan dalam proses yang mendasarinya. Sebagai ilustrasi, kami mengusulkan sebuah kumpulan data yang menggabungkan perubahan pada rata-rata deret deret waktu. Angka tersebut menunjukkan deret waktu yang digunakan untuk ilustrasi bersamaan dengan permintaan rata-rata dari mana seri tersebut dihasilkan. Mean dimulai sebagai konstanta pada 10. Dimulai pada waktu 21, meningkat satu unit pada setiap periode sampai mencapai nilai 20 pada waktu 30. Maka akan menjadi konstan lagi. Data disimulasikan dengan menambahkan mean, noise acak dari distribusi Normal dengan mean nol dan standar deviasi 3. Hasil simulasi dibulatkan ke bilangan bulat terdekat. Tabel menunjukkan simulasi pengamatan yang digunakan untuk contoh. Saat kita menggunakan tabel, kita harus ingat bahwa pada suatu waktu, hanya data terakhir yang diketahui. Estimasi parameter model,, untuk tiga nilai m yang berbeda ditunjukkan bersamaan dengan mean deret waktu pada gambar di bawah ini. Angka tersebut menunjukkan perkiraan rata-rata pergerakan rata-rata pada setiap waktu dan bukan perkiraan. Prakiraan akan menggeser kurva rata-rata bergerak ke kanan menurut periode. Satu kesimpulan segera terlihat dari gambar tersebut. Untuk ketiga perkiraan, rata-rata bergerak tertinggal dari tren linier, dengan lag meningkat dengan m. Keterlambatan adalah jarak antara model dan estimasi dalam dimensi waktu. Karena lag, rata-rata bergerak meremehkan pengamatan karena rata-rata meningkat. Bias estimator adalah perbedaan pada waktu tertentu dalam nilai rata-rata model dan nilai rata-rata yang diprediksi oleh moving average. Bias ketika mean meningkat adalah negatif. Untuk mean yang menurun, biasnya positif. Keterlambatan waktu dan bias yang diperkenalkan dalam estimasi adalah fungsi m. Semakin besar nilai m. Semakin besar besarnya lag dan bias. Untuk seri yang terus meningkat dengan tren a. Nilai lag dan bias estimator mean diberikan dalam persamaan di bawah ini. Kurva contoh tidak sesuai dengan persamaan ini karena contoh model tidak terus meningkat, melainkan dimulai sebagai perubahan konstan, berubah menjadi tren dan kemudian menjadi konstan lagi. Juga contoh kurva dipengaruhi oleh noise. Perkiraan rata-rata pergerakan periode ke masa depan ditunjukkan dengan menggeser kurva ke kanan. Kelemahan dan bias meningkat secara proporsional. Persamaan di bawah ini menunjukkan lag dan bias dari perkiraan periode ke masa depan bila dibandingkan dengan parameter model. Sekali lagi, formula ini untuk rangkaian waktu dengan tren linier konstan. Kita tidak perlu heran dengan hasil ini. Pengukur rata-rata bergerak didasarkan pada asumsi mean konstan, dan contohnya memiliki kecenderungan linier dalam mean selama sebagian periode penelitian. Karena deret real time jarang sekali menaati asumsi model apapun, kita harus siap untuk hasil seperti itu. Kita juga dapat menyimpulkan dari gambar bahwa variabilitas noise memiliki efek terbesar untuk m yang lebih kecil. Estimasi ini jauh lebih fluktuatif untuk rata-rata pergerakan 5 dari moving average 20. Kami memiliki keinginan yang saling bertentangan untuk meningkatkan m untuk mengurangi efek variabilitas akibat kebisingan, dan untuk menurunkan m untuk membuat perkiraan lebih responsif terhadap perubahan. Berarti. Kesalahan adalah perbedaan antara data aktual dan nilai perkiraan. Jika deret waktu benar-benar nilai konstan maka nilai kesalahan yang diharapkan adalah nol dan varians dari kesalahan tersebut terdiri dari sebuah istilah yang merupakan fungsi dari dan istilah kedua yaitu variansi dari noise,. Istilah pertama adalah varians dari mean yang diperkirakan dengan sampel pengamatan m, dengan mengasumsikan data berasal dari populasi dengan mean konstan. Istilah ini diminimalkan dengan membuat m seluas mungkin. Sebuah m besar membuat ramalan tidak responsif terhadap perubahan deret waktu yang mendasarinya. Untuk membuat perkiraan responsif terhadap perubahan, kami ingin m sekecil mungkin (1), namun ini meningkatkan varians kesalahan. Peramalan praktis membutuhkan nilai antara. Peramalan dengan Excel Peramalan Peramalan menerapkan rumus rata-rata bergerak. Contoh di bawah ini menunjukkan analisis yang diberikan oleh add-in untuk data sampel di kolom B. 10 pengamatan pertama diindeks -9 sampai 0. Dibandingkan dengan tabel di atas, indeks periode digeser oleh -10. Sepuluh observasi pertama memberikan nilai awal untuk estimasi dan digunakan untuk menghitung rata-rata pergerakan untuk periode 0. Kolom MA (10) (C) menunjukkan rata-rata bergerak yang dihitung. Parameter rata-rata bergerak m ada pada sel C3. Kolom Fore (1) (D) menunjukkan perkiraan untuk satu periode ke masa depan. Interval perkiraan ada di sel D3. Bila interval perkiraan diubah ke angka yang lebih besar, angka-angka di kolom Fore digeser ke bawah. Kolom Err (1) menunjukkan perbedaan antara pengamatan dan perkiraan. Misalnya, pengamatan pada waktu 1 adalah 6. Nilai perkiraan yang dibuat dari moving average pada waktu 0 adalah 11.1. Kesalahannya adalah -5.1. Deviasi standar dan Mean Average Deviation (MAD) dihitung masing-masing sel E6 dan E7.

No comments:

Post a Comment